Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian Jun Lu and Jing Min Shi*

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail:
shijingmin@beelink.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.054$
$w R$ factor $=0.141$
Data-to-parameter ratio $=12.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexaaquazinc(II) bis(perchlorate) bis(2,5-dimethylpyrazine 1,4-dioxide)

The title molecular complex, $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, consists of neutral 2,5-dimethylpyrazine 1,4-dioxide molecules, a hexaaquazinc(II) cation and perchlorate anions, linked through Coulombic attraction and hydrogen bonding. Half the neutral molecules lie in general positions, and the other half are on inversion centers.

Comment

In the crystal structure of the title complex, (I), the zinc(II) ion is coordinated by six water molecules and has distorted octahedral geometry (Fig. 1). The coordinated water molecules are involved in extensive hydrogen-bonding interactions with both the perchlorate O atoms and the 2,5dimethylpyrazine 1,4 -dioxide molecules. The asymmetric unit consists of one cation, two anions, a neutral molecule in a general position, and halves of two separate centrosymmetric neutral molecules. In addition, there is Coulombic attraction between the hexaaquazinc(II) cation and the perchlorate anions. The hydrogen bonds which connect the three components in the crystal structure are shown in Fig. 2. In the crystal structure, the hexaaquazinc(II) cations and 2,5-dimethylpyrazine 1,4-dioxide molecules are each stacked in an orderly manner along the b axis, forming infinite columns. Each hexaaquazinc(II) column is surrounded by four 2,5-dimethylpyrazine 1,4-dioxide columns and perchlorate anions are inserted into the columns of 2,5-dimethylpyrazine 1,4-dioxide molecules.

(I)

Received 12 November 2004
Accepted 11 January 2005
Online 22 January 2005

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$

$M_{r}=652.65$

Orthorhombic, Pbcn
$a=19.700$ (4) A
$b=13.097$ (3) A
$c=20.021$ (4) \AA
$V=5166(2) \AA^{3}$
$Z=8$
$D_{x}=1.678 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.575, T_{\text {max }}=0.875$
26350 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.142$
$S=1.06$
4805 reflections
386 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation Cell parameters from 3876 reflections
$\theta=2.9-24.2^{\circ}$
$\mu=1.24 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Rectangular block, colorless $0.50 \times 0.15 \times 0.11 \mathrm{~mm}$

4805 independent reflections 3802 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-23 \rightarrow 23$
$k=-15 \rightarrow 15$
$l=-24 \rightarrow 22$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0678 P)^{2}\right. \\
&+6.6643 P] \\
&
\end{aligned}
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.88 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.82 \mathrm{e} \mathrm{A}^{-3}$

Figure 1
The title complex, with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitary radii. [Symmetry codes: $(A)-x$, $-y+1,-z+1 ;(B)-x+1,-y+1,-z$.

Figure 2
The packing of (I), with hydrogen bonds shown as dashed lines.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Masison, Wisconsin, USA.

